Contrasting roles of inertial and muscle moments at knee and ankle during paw-shake response.

نویسندگان

  • M G Hoy
  • R F Zernicke
  • J L Smith
چکیده

Intralimb kinetics of the paw-shake response (PSR) were studied in four spinal, adult cats. Using rigid body equations of motion to determine the dynamic interactions between limb segments, knee and ankle joint kinetics were calculated for the steady-state cycles as defined in the preceding paper. Hindlimb motion was filmed (200 frames/s) to obtain knee and ankle kinematics. Responses of flexors and extensors at both joints were recorded synchronously with cinefilm. Ankle and knee joint kinematics were determined from 51 steady-state cycles of 16 PSRs. Average maximum displacements, velocities, and accelerations were substantially greater for the ankle than for the knee joint. Knee and ankle motions were out of phase in the first part of the cycle; knee extension occurred simultaneously with ankle flexion. In the second part of the cycle, motions at the two joints were sequential; rapid knee flexion, accompanied by negligible ankle displacement, preceded rapid ankle extension with minimal knee displacement. At the ankle joint, peak net moments tending to cause flexion and extension were similar in magnitude and determined primarily by muscle moments. Moments due to leg angular acceleration contributed significantly to an extensor peak in the net moment near the end of the cycle. Other inertial and gravitational moments were small. At the knee joint, net moments tending to cause flexion and extension were also similar, but smaller than those at the ankle. The knee muscle moments, however, were large and counteracted large inertial moments due to paw angular acceleration. Also, moments due to leg angular acceleration and knee linear acceleration were substantial and opposite in effect. Other inertial and the gravitational moments were negligible. Muscle moments slowed and reversed joint motions, and active muscle force components of muscle moments were derived from lengthening of active musculotendinous units. Segmental interactions, in which proximal segment motion augmented distal segment velocity, increased the effectiveness of PSR steady-state cycles by facilitating the generation of extremely large paw linear accelerations. Limb oscillations during PSR steady-state result from interactions between muscle synergies and motion-dependent limb dynamics. At the ankle, muscle activity functioned to control paw acceleration, whereas at the knee, muscle activity functioned to control leg and paw inertial interactions.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Task-dependent inhibition of slow-twitch soleus and excitation of fast-twitch gastrocnemius do not require high movement speed and velocity-dependent sensory feedback

Although individual heads of triceps surae, soleus (SO) and medial gastrocnemius (MG) muscles, are often considered close functional synergists, previous studies have shown distinct activity patterns between them in some motor behaviors. The goal of this study was to test two hypotheses explaining inhibition of slow SO with respect to fast MG: (1) inhibition occurs at high movement velocities a...

متن کامل

Simultaneous control of two rhythmical behaviors. II. Hindlimb walking with paw-shake response in spinal cat.

The simultaneous control of the hindlimb paw-shake response and hindlimb walking at slow treadmill speeds (0.2-0.4 m/s) was examined in adult cats spinalized at the T12 level, 3-6 mo earlier. Paw shaking was elicited by either 1) application of adhesive tape or 2) water to the right hindpaw. To assess intralimb and interlimb coordination of the combined behaviors, activity from selected flexor ...

متن کامل

بررسی اثرات خستگی عضلات زانو و مچ پا بر روی نیروی گشتاوری مفصل مچ پا و مرکز اعمال نیروی کف پایی در طی فاز نامتعادل ایستادن یک پایی

  Background: The aim of this study was to investigate the effect of muscle fatigue on ankle joint moment and center of pressure during single-leg stance, perturbed by forward or backward platform perturbations.   Methods : In this semi-experimental study fatigue induced to knee muscles by using an ergometer (monark). Surface elecromyographic signals were recorded from knee muscles during maxim...

متن کامل

Muscle afferent contribution to control of paw shakes in normal cats.

1. The discharge of various hindlimb muscle afferents was recorded during paw shakes in normal cats with the use of floating dorsal root electrodes. 2. Muscle spindle group Ia-afferents and tendon organ group Ib-afferents fired during muscle lengthening, reaching very high peak discharge rates and then silencing at or shortly after the onset of shortening. The timing of Ia firing was consistent...

متن کامل

Mechanics of slope walking in the cat: quantification of muscle load, length change, and ankle extensor EMG patterns.

Unexpected changes in flexor-extensor muscle activation synergies during slope walking in the cat have been explained previously by 1) a reorganization of circuitry in the central pattern generator or 2) altered muscle and cutaneous afferent inputs to motoneurons that modulate their activity. The aim of this study was to quantify muscle length changes, muscle loads, and ground reaction forces d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 54 5  شماره 

صفحات  -

تاریخ انتشار 1985